Inverse Association of Vitamin C with Cataract in Older People in India

We found a strong association with vitamin C and cataract in a vitamin C–depleted population.


Vitamin C Is Associated with Reduced Risk of Cataract in a Mediterranean Population

Cataract is an important visual problem of older people and a substantial health care cost in many countries. Most studies investigating risk factors for cataract have been conducted in the United States, and there is less information on the possible role of dietary factors in European populations. We conducted a case–control study to investigate the association of antioxidant vitamins and minerals and risk of cataract in a Mediterranean population.

Our results strengthen the evidence for a protective role for vitamin C on the aging lens as this effect was seen in a population characterized by high vitamin C intakes.


Zinc and Autophagy in Age-Related Macular Degeneration

Zinc supplementation is reported to slow down the progression of age-related macular degeneration (AMD), but there is no general consensus on the beneficiary effect on zinc in AMD. As zinc can stimulate autophagy that is declined in AMD, it is rational to assume that it can slow down its progression. As melanosomes are the main reservoir of zinc in the retina, zinc may decrease the number of lipofuscin granules that are substrates for autophagy. The triad zinc–autophagy–AMD could explain some controversies associated with population studies on zinc supplementation in AMD as the effect of zinc on AMD may be modulated by genetic background. This aspect was not determined in many studies regarding zinc in AMD. Zinc deficiency induces several events associated with AMD pathogenesis, including increased oxidative stress, lipid peroxidation and the resulting lipofuscinogenesis. The latter requires autophagy, which is impaired. This is a vicious cycle-like reaction that may contribute to AMD progression. Promising results with zinc deficiency and supplementation in AMD patients and animal models, as well as emerging evidence of the importance of autophagy in AMD, are the rationale for future research on the role of autophagy in the role of zinc supplementation in AMD.


Zinc Nutrition and Inflammation in the Aging Retina

Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it aspects both innate and adaptive immune responses. The eye, especially the retina‐choroid complex, has an unusually high concentration of zinc compared to other tissues.

Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age‐related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina‐choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.