Vitamin C in Disease Prevention and Cure: An Overview
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Immunomodulatory and Antimicrobial Effects of Vitamin C
Humans have lost their vitamin C-synthesizing capacities during evolution. Therefore, the uptake of this essential compound from external sources is mandatory in order to prevent vitamin C-deficient conditions resulting in severe morbidities such as scurvy. The potent antioxidant, immunomodulatory, and antiinfectious effects of vitamin C are known since the 1930s. We here (i) review the impact of vitamin C on innate and adaptive immune functions, (ii) provide an overview of its antimicrobial, antibacterial, antiviral, antiparasitic, and antifungal properties, and finally, (iii) discuss vitamin C as an adjunct treatment option for the combat of human infections by bacteria, particularly by emerging multidrug-resistant species.
Zinc and immune function: the biological basis of altered resistance to infection
Zinc is known to play a central role in the immune system, and zinc-deficient persons experience increased susceptibility to a variety of pathogens. The immunologic mechanisms whereby zinc modulates increased susceptibility to infection have been studied for several decades. It is clear that zinc affects multiple aspects of the immune system, from the barrier of the skin to gene regulation within lymphocytes. Zinc is crucial for normal development and function of cells mediating nonspecific immunity such as neutrophils and natural killer cells. Zinc deficiency also affects development of acquired immunity by preventing both the outgrowth and certain functions of T lymphocytes such as activation, Th1 cytokine production, and B lymphocyte help. Likewise, B lymphocyte development and antibody production, particularly immunoglobulin G, is compromised. The macrophage, a pivotal cell in many immunologic functions, is adversely affected by zinc deficiency, which can dysregulate intracellular killing, cytokine production, and phagocytosis. The effects of zinc on these key immunologic mediators is rooted in the myriad roles for zinc in basic cellular functions such as DNA replication, RNA transcription, cell division, and cell activation. Apoptosis is potentiated by zinc deficiency. Zinc also functions as an antioxidant and can stabilize membranes. This review explores these aspects of zinc biology of the immune system and attempts to provide a biological basis for the altered host resistance to infections observed during zinc deficiency and supplementation.
Zinc as a Gatekeeper of Immune Function
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases
As a spore-forming probiotic bacterium, Bacillus coagulans has become a focus of research due to its high tolerance of extreme environments and probiotic characteristics. Several beneficial effects of B. coagulans have been reported. Firstly, B. coagulans can promote intestinal digestion. For example, B. coagulans strains can produce various enzymes that facilitate excretion and digestion. Secondly, B. coagulans can regulate host symbiotic microbiota and inhibit the growth of pathogenic bacteria. Lastly, due to its ability to normalize both the quantitative parameters of the immune system and immune cells’ functional activity, B. coagulans can significantly benefit the host immune system. Due to the evidence supporting various probiotic effects of B. coagulans, many B. coagulans strains have been studied in the management and alleviation of several human diseases. Therefore, the administration of B. coagulans may be an attractive preventive and/or therapeutic approach for human diseases.
Original Research: A Patented Strain of Bacillus coagulans Increased Immune Response to Viral Challenge
Viral respiratory tract infection is the most common illness among humans. Probiotics have been known to enhance the immune system and, therefore, may represent a significant therapeutic advancement for treating viral respiratory tract infections. A controlled study was conducted to evaluate the effects of the patented GanedenBC30 probiotic (Bacillus coagulans) on the immune system when exposed to adenovirus and influenza in otherwise healthy adults…
No serious adverse events were reported throughout the study. The patented GanedenBC30 probiotic may be a safe and effective therapeutic option for enhancing T-cell response to certain viral respiratory tract infections.